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The replica method and a solvable spin glass model 
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Duke University, Durham, N.C. 27706, USA 

Received 14 July 1978, in final form 13 September 1978 

Abstract. The replica method for random systems is critically examined, with particular 
emphasis on its application to the Sherrington-Kirkpatrick solution of a ‘solvable’ spin glass 
model. The procedure is improved and extended in several ways, including the avoidance of 
steepest descents and a reformulation which isolates the thermodynamic limit N --* E. Ideas 
of analyticity and convexity are employed to investigate the two most dubious steps in the 
replica method: the extension from an integer number ( n )  of replicas to real n in the limit 
n -0 ,  and the reversal of the limits in n and N. The latter step is proved valid for the 
Sherrington-Kirkpatrick problem, while the non-uniqueness of the former is held respon- 
sible for the unphysical behaviour of the result. 

1. Introduction 

The central problem of equilibrium statistical mechanics is the calculation of the free 
energy, F N ( p ) ,  of a system of N particles at inverse temperature p = l / k T ,  and the 
subsequent use of the thermodynamic limit, N + CO, to derive the free energy per 
particle 

f ( P ) =  lim FN(P)IN. 
N-C= 

The existence of the thermodynamic limit is either proved or, more commonly, assumed 
on physical grounds. Exact solutions for f(p) are known for a few non-trivial systems, 
but in most cases one has to resort to approximate methods or tricks. The thermo- 
dynamic limit is normally an integral part of such methods, being a requirement for their 
validity rather than a final hurdle. It is usually needed in the evaluation of the partition 
function, ZN, before a logarithm is taken to derive - p F N ( p )  = In ZN, because it justifies 
the neglect of factors in ZN of lower than exponential order in N. 

This familiar scheme is severely upset by the introduction of randomness. In a 
random system the Hamiltonian, and hence FN ( p ) ,  contains some random parameters 
representing the interactions or quenched configuration in a given sample. There are 
typically O ( N )  or O ( N 2 )  random parameters, which we assume independent. In a few 
cases the final result, f ( p ) ,  can be shown to be the same for almost every such sample 
(van Hemmen, unpublished), but one usually has to average over all possible samples by 
averaging FN ( p )  over some probability distribution for the random parameters. This 
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average must be computed after taking the logarithm, but before taking the thermo- 
dynamic limit, giving 

- p f ( p )  = lim N-'(ln Z N ( ~ ) ) .  
N'T) 

We will always use the symbol (. . .) to denote averaging over the randomness. The 
thermodynamic limit can no longer be used directly in the evaluation of 2, (8) and most 
conventional methods lose their validity. In addition, performing the average (. . .)over 
many random parameters seems hopeless because the logarithm prevents any useful 
factorisation into a product of one-parameter averages. 

The second of these problems is largely summounted by the 'replica trick' in which 
one replaces (In 2) by 

lim ( (Z" )  - l ) / n .  
n - 0  

For positive integer n the computation of (Z")  is frequently feasible, the average (. . .) 
now being made possible by factorisation. Unfortunately, this introduces a new 
problem; the extension from positive integer n to real n in the neighborhood of n = 0. 
Additionally, it has not proved possible to avoid the first problem, that of requiring the 
thermodynamic limit in the evaluation of 2 or (2") itself. One needs to employ the 
limit N + CO before the limit n + 0 in order to perform the trace implicit in 2, but the 
reverse order is clearly specified by the above framework. Previous authors have 
assumed that the limits may simply be interchanged, a question that we will examine in 
some detail. 

The replica trick has a long history, dating back at least to Hardy eta1 (1934 Q 6.8) as 
an identity for computing the average of a logarithm, but has become well known only 
recently since its application to the spin glass problem by Edwards and Anderson 
(1975); see also Kac 1968 and Lin 1970. In some applications, such as the spherical 
model spin glass treated by Kosterlitz et al (1976),  the replica trick gives exactly the 
correct result obtainable by other methods, while in other cases the replica trick leads to 
a result that is definitely incorrect. The best example of this behaviour is in the solution 
of an Ising spin glass model by Sherrington and Kirkpatrick (1975),  which we refer to as 
SK;  their solution exhibits a negative entropy at low temperature. The same model has 
since been solved by Thouless et ai (1977),  giving physically reasonable low tempera- 
ture predictions quite different from those of s ~ .  The model therefore seems well 
defined, but SK'S application of the replica trick fails entirely. 

Several reasons may be proposed for the failure of the SK solution, including the 
reversal of the limits on N and n (SK and Palmer, unpublished), the passage from 
positive integer n to n = 0 (Klein 1977), the stability of SK'S stationary point in their 
steepest descent method (de Almeida and Thouless 1978), and the steepest descent 
method itself (see comment before equation (26)).  It is the purpose of this paper to 
address these potential problems, both for the replica trick in general and for the SK 

solution in particular. Although failing to find any useful general criteria for the 
effectiveness or otherwise of the replica trick, we are able to shed some light on its 
possible failures, and on the particular problems of the SK solution; these we blame on 
the extension from integer to real n. We succeed in avoiding the steepest descent 
method altogether, and in making the thermodynamic limit explicit. In passing, we also 
extend the work of SK to probability distributions for the random variables more 
general than Gaussian. 
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In 9 2 we consider the replica trick in general and propose a three step process for its 
execution. The first step is essentially the calculation of ( ln(Zk)) /N in the thermo- 
dynamic limit, for positive integer n ; the second is the passage from integer n to n in the 
neighbourhood of zero; and the third is the proof of the equivalence of the result to that 
desired with the N and n limits reversed. The first step is performed for the standard SK 
problem in 9 3, and for the SK problem with generalised probability distributions in 0 4. 
The second and third steps are treated in Q 5 from the viewpoint of analyticity, and in 
9 6 from the viewpoint of convexity. Our conclusions are summarised in § 7. 

2. The replica method 

Let us consider a spin system of N sites, with a Hamiltonian Zav that contains some 
random parameters. An example is the SK Hamiltonian, equation ( lo) ,  in which the 
random parameters are the i N ( N  - 1) pair interaction strengths, .TI,, but in this section 
we consider no specific model. We are interested in calculating the partition function 

= Tr exp(-p%) ( 2 )  
and hence the averaged free energy per particle, f(P), in the thermodynamic limit 
according to  equation (1). For a classical Ising system, the trace in equation (2) is simply 
a sum over all spin configurations. We normally abbreviate Z N ( p )  to ZN or Z. 

The conventional replica trick employs the relation 

(2") - 1 
(In Z )  = lim ~ 

n 

but we find it more convenient to use the equivalent identity 

d 
dn 

(In 2)  = - h(Z") In=o.  

(3) 

(4) 

There are several advantages of this formulation, as will soon become apparent. 
Defining 

q5N(n) = N-' In(ZL) ( 5 )  

we must calculate 

For positive integer n, apart from a factor -p,  the quantity q5N(n) is just the free 
energy per site of a replica system of N sites with n spins at each site. The replicas 
1 , 2 , .  . . , n all have the same random parameter set, but are uncoupled before 
averaging. The average (. . .) in (5) is to be computed before taking the logarithm; this 
corresponds to an annealed system in which the random parameters may be regarded as 
thermodynamic variables with values weighted by their thermodynamic probability. 
We therefore expect & ( n )  to be meaningful in the thermodynamic limit, at least for n a 
positive integer, and define 

4 ( n ) =  lim q5N(n). 
N - w  

(7) 

We also assume, for the present, that the limit in (7) exists for all real n. The function 
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&(n)  is defined, by ( 5 ) ,  for real n and all finite N but it is not obvious that it tends to a 
limit at N + 03 unless n is a positive integer. The fact that it does indeed have a limit is 
central to the replica trick, and is essentially proved in § 6. 

For positive integer n, we may expect to be able to evaluate d ( n )  explicitly for a 
specific system, as we shall do in $ 9  3 and 4 for the SK problem. The use of the 
thermodynamic limit will be essential in that evaluation, and in general our hopes for 
exact evaluation may be high for d ( n )  but are vanishingly low €or 4 N ( n ) .  

Unfortunately, the prescription (6) requires the differentiation at n = 0 before use of 
the thermodynamic limit. This naturally raises the question: Under what circumstances 
can we interchange the order of the limit N + CO and the differentiation with respect to n 
at n = O? Or, more formally, 

We note that both sides of (8) are well defined in the thermodynamic limit, in contrast to 
previous prescriptions (such as SK), which involve (2") rather than (Z")"-l. 

The definition ( 5 ) ,  and an examination of the computations required, gives us little 
confidence in the possibility of explicitly evaluating & ( a )  for anything but positive 
integer n, and then only in the limit N + m .  We must therefore ask: Under what 
conditions can we extend d ( n )  from positive integer n to real or complex n in the 
neighbourhood of n = O? Symbolically, 

There are many techniques that might appear useful in answering questions (8) and 
(9), but it seems in practice that these reduce to just two fundamental ideas. One is 
analyticity, to which we devote § 5, and the other is convexity, treated in 0 6. Perhaps 
surprisingly, convexity turns out to be the more powerful tool. 

Postponing the detailed discussion for subsequent sections, we see that we have 
effectively broken down the computation of f ( P )  into a three step process: 

( a )  Calculate 4 ( n )  for positive integer n ;  
( 6 )  Find an extension of # ( n )  to n = O ,  and then compute # ' ( O ) ,  showing that the 

(c) Prove that equation (8) is true, and hence that the result 4'(0) is indeed the 

This procedure might justly be called the replica method, as opposed to the basic replica 
trick of equation (3) or (4). 

We implement step ( a )  for the SK problem in § §  3 and 4, and then return to a 
discussion of steps ( b )  and (c)  in 99 5 (analyticity) and 6 (convexity). 

value so obtained is unique; 

required - P f ( P ) .  

3. The Sherrington-Kirkpatrick problem 

Sherrington and Kirkpatrick (1975; see also Kirkpatrick and Sherrington 1978) have 
proposed a model of a spin glass that apparently allows an exact solution for f(P). Their 
solution uses the replica trick, and is subject to the general criticisms considered in § 2, 
as well as additional doubts about the steepest descent method employed. Further, the 
status of the thermodynamic limit is somewhat unclear because it is not made explicit. 
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We therefore rederive the essential results of SK in a simple but rigorous way, 
showing at the same time why the model is exactly soluble. We use the basic 
formulation of 3 2 to make the thermodynamic limit explicit, and appeal to the 
molecular field techniques of van Hemmen (1978) and den Ouden er a1 (1976a, b )  to 
avoid the steepest descent method. 

The SK Hamiltonian may be written in the form 

It describes N Ising spins, S ( i )  = k l ,  interacting with each other in pairs ( i j )  and with an 
external field h. Summations over pairs ( i j )  count each pair once only and exclude i = j 
terms. The interactions Jtj  are independent identically distributed random variables 
with mean zero and variance one. SK assumed a Gaussian probability distribution with 
density 

p ( ~ , ~ )  = ( 2 ~ ) ~ " ~  exp( - $J:) (11)  

which we too adopt for now, before considering other distributions in the next section. 
We also simplify the model-without destroying the spin glass behaviour-by setting 
jo  = h = 0 ;  we return to the general case at the end of this section. 

Let n be a positive integer. Then 

P j  Z" = (Tr exp(-PX)" = Tr exp p Jij( Sa( i )Sm(  j ) )  
( i j )  U =  1 

where a labels the n replicas and the trace, a finite sum, must now be taken over all n N  
spins S*(i) .  We may immediately average over the randomness by integrating over the 
probability distribution (1  l), obtaining 

where y = P 2 j 2 .  A simple rearrangement gives 

and hence 

4 ( n )  = lim 4 N ( n )  = lim N-' ln(2") 
N-tCC N - w  

N 2 

= i y n - y  lim --(yN)-'lnTrexp- Y 1 (E S u ( i ) S p ( i ) )  . (15)  
N-CC 2 N  (ap )  i = i  

The limit in the second term is nothing but the free energy per site f n ( y )  of a 
molecular field model at inverse temperature y and Hamiltonian 

so that 

-yfn(y) = lim N-' In Tr exp(-yZMF) (17) 
N-CC 
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It is known (van Hemmen 1978, den Ouden et a1 1976a, b) that a problem of the form 
(16)-(17) may be solved by the use of a simpler effective Hamiltonian, H,  which is 
independent of N and gives exactly f n ( y ) ,  the quantity required after the thermo- 
dynamic limit, according to 

-y f , (y )=InTrexp( -y~) .  (19) 

It is precisely this ‘removal’ of the thermodynamic limit that makes the problem soluble. 
The effective Hamiltonian appropriate to the present XMF may be written 

where q is a vector with i n ( n  - 1) components quo, 1 scu < p S n. H ( q )  describes n 
interacting Ising spins S,, with ‘interactions’ qap that must be chosen so that 

(21) 

(22) 

( a )  quo = T r  S& exp(-yH(q))/Tr exp(-yH(q)) 

( b )  given ( a ) ,  the q-dependent free energy 

f n ( q ;  Y )  = -Y-’ In Tr exp(-yH(q)) 

be minimal. 
The minimum is then the required f , , (y).  Defining 

the condition (a) may be rewritten 

Y 4 4  = 
a In E,(q) 

aqua 
and equation (22) becomes 

(24) 

We are now left with one problem, the minimisation of equation (25), because (24) is a 
necessary condition for an extrema1 value and may be dropped. We note that the 
condition (21) implies that minima are to be found only in the unit cube, \qup\ s 1 for all 
pairs (ap). 

Surprisingly, the minimization of f,, (q  ; y )  is highly non-trivial. Explicit differen- 
tiation shows that q = 0 is a local minimum when y < 1 and a local maximum when 
y 7 1, but this is little help in locating the absolute minimum, even for y < 1. In 
Appendix A (much of which is based on the work of Elliott Lieb), we prove that the 
absolute minimum off,(q; y )  is always realised on the positive diagonal, qap = q 2 0 for 
all pairs (cup). The minimisation is thus reduced to a one-dimensional problem along 
this diagonal. We also show in Appendix A that there are 2”-’ - 1 additional absolute 
minima elsewhere equivalent to any minimum on the positive diagonal (unless q = 0); 
however, since our prescription requires only one absolute minimum, these extra 
minima may safely be ignored. 

Sherrington and Kirkpatrick assumed that all the analogous maxima in their 
steepest descent method were to be found on the positive diagonal, overlooking the 
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2n-’ - 1 additional maxima. Logically however, the steepest descent approach requires 
the inclusion of all absolute maxima, and the result of the SK evaluation of (2”) should 
be multiplied by 2“- ’ .  Unfortunately this correction gives a divergence in the n + O  
limit. 

It is now easy to complete the calculation of q5(n). On the positive diagonal qap = q, 
3 

= “ ( q )  = Tr exp(yq 1 S&) 
(4) 

=exp(- tnyq)Trexp i’ zyq i,, 1 S ,  ) 2 )  

where the last equality follows from the identity 

Equations (18), (25), and (27) now give, finally, 

where 4 may be determined by applying equation (24)  along the positive diagonal and 
integrating by parts, giving the implicit equation 

dz 
exp(-tz2)z tanh[(yq)1/2z] ~ o s h ” [ ( y q ) ’ / ~ z ]  

(29)  dz 4 =  
/ 2  exp( - 4.z cosh‘’ (( yq) ‘’2z) 

When this equation has more than one solution, we must choose the one which gives the 
smallest value of f n ( q ;  y), and hence the largest value of q5(n). A numerical study ( t o  be 
reported elsewhere) shows that this prescription gives q = 0 when y 6 yc, and q > 0 
when y > yc, with yc a decreasing function of n. At n = 2 ,  yc = 1 and q goes continu- 
ously to zero as y +  1-, but for n 3 3  there is a jump discontinuity in q at yo and a 
corresponding discontinuity in df,,/dy, signalling a first order phase transition in the 
replica system. 

If we simply treat n as a real variable in (28)  and (29),  which is certainly one 
extension from integer to real n, and assume the truth of equation (8), we arrive at 
precisely the SK result: 

with 

dz 
exp(-tz2) tanh2(pjzq”*). 

If T 3 T, = j / k  the only solution of equation (31) is q = 0. When T < T, there is 
another solution, with q > 0, that should presumably be selected, since it is a more 
natural continuation from the finite n results, and gives the larger value of f@).  
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The result for q5(n), equations (28) and (29), is rigorous, but the final SK result, 
equations (30) and (31), gives rise to a negative entropy at low temperatures (whichever 
solution is chosen for q) ,  and is therefore certainly wrong. The fault must lie in the 
assumptions used between equations (29) and (30), which correspond to the questions 
(8) and (9) raised in § 2. We defer further discussion until §§ 5 and 6. 

The generalisation to the full SK Hamiltonian, equation ( lo) ,  presents no problem 
and will be sketched only briefly. The equivalent of equation (16) is 

(32) 

and this time the inverse temperature is p itself. The corresponding effective Hamil- 
tonian is 

where quo obeys the analogue of (21) and ma satisfies 

m, = Tr Su exp(-@H)/Tr exp(-pH). (34) 

Applying an extension of the theorem of Appendix A, we find that the appropriate 
minimum lies on the plane qap = 4,  mu = m, where q and/or m may be zero in different 
regions of the phase diagram. The minimisation and evaluation then cause no difficulty 
and precisely reproduce the results of Kirkpatrick and Sherrington (1978). 

4. Other probability distributions 

Before continuing with our discussion of the replica method, we turn to other prob- 
ability distributions, more general than the Gaussian used by SK. We show that almost 
any even probability distribution leads to the same results for the SK problem. 

Let us retain the Hamiltonian ( lo) ,  again taking j0 = h = 0, but now let the JI, be 
distributed according to an arbitrary even probability distribution with density p(x). 
Equation (11) the Gaussian, represents one special case; another example is p(x)  = 
t s (x  + l ) + $ ( x  - 1). As before, we assume of course that the Jl, are independent and 
identically distributed, and for convenience we take ( J t )  = 1. 

We require one further restriction on p(x). We assume that 

is an entire function of z, implying the existence of all moments. When z = it, with t real, 
F,(z) is the characteristic function of p (Breiman 1968). For real I in the neighbour- 
hood of the origin we have, by Taylor expansion of exp(xz), 

1 1 
2 4! F,(z) = 1 +- z’+- I ~ ( J ~ ) + O ( ~ ~ ) ,  (36) 

the odd moments vanishing because p ( x )  is even, 
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The calculation of equations (12)-(13) may now be repeated, giving 

= Tr e x p ( 1  (I,) ln[Fp(g.fA,,/N1’2)l) 

where 
n 

A,, = s m ( i ) s m ( j ) .  
a = l  

It is important to note that -n s A,, s n whatever N. 
Putting y = ( P j ) ’ ,  6 = p4(J4), and using (36), we obtain 

Fp(p.fAl,/N1’2) = 1 +(y/2N)Af, +(6/24N2)A: +o(l/N2) 

which enables us to evaluate the sum in (37): 

The first term gives the desired contribution, while the correction term A(Al,) is of order 
N-* and thus gives a bounded sum, 

where the constant C may be chosen independently of N (and the A,,) .  
The correction is not obviously ignorable, but in fact becomes so in the thermo- 

dynamic limit. We therefore focus our attention on 4 N ( n ) ,  the quantity that is relevant 
in this limit: 

Taking advantage of the Bogoliubov-Peierls inequality (Ruelle 1969) 

N-lIIn Tr(exp(A)) -In Tr(exp(B)) sN-’IIA -BII (43) 

and the bound (41), we may now conclude that 

This proves that the details of the probability distribution, which are all contained in -2, 
are quite irrelevant in the thermodynamic limit. 

Three comments are appropriate. Firstly, the restriction that Fp(z) be entire is 
needed for the model to make any sense at all, since PA,, in equation (37) may take any 
value between -cc and +W. Secondly, the extension to the full Hamiltonian, without 
j o  = h = 0, is straightforward and does not change the conclusion. Finally, we note that 
the classical structure of the model has been used in an essential way, particularly in 
equation (37). 
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5. Analyticity 

Having completed step (a) of the replica method, the calculation of 4 ( n )  for positive 
integer n, we turn to steps (b) and (c) as defined at the end of 8 2. These require us to 
face questions (8) and (9), concerning reversal of limits and extension to real or complex 
n. In this section we consider these questions from the point of view of the analytic 
properties of 4 N ( n )  as a function of complex n. 

Since 2, is positive, whatever /3 and the J,,, the quantity (2;) = (exp(n In 2,)) is 
well defined and analytic for all complex n. However, the function 4 N ( n ) ,  defined by 
equation ( 5 ) ,  involves the logarithm of (Z;.) and is only analytic in  domains containing 
no zeros of (2;). There can be no zeros for real n, so we may choose a simply connected 
domain DN that includes the whole real axis but excludes the zeroes of ( Z k ) ;  the 
bounds established in Appendix B (for SK) assure us that the zeroes lie a finite distance 
from the real axis. Unfortunately, DN depends on N, and may cease to be a finite simply 
connected domain in the limit N + a. For example, the zeroes of (ZG) might approach 
the real axis at n = 1, say, cleaving DN there in the thermodynamic limit. This picture is 
akin to the Yang and Lee (1952) description of a phase transition, with the ‘transition’ 
occurring as a function of n. If such a cleavage takes place, we are doomed to failure in 
any attempt to continue d ( n )  through the ‘transition’ to n = 0, and the calculation of 
4 ( n )  for positive integer n is essentially irrelevant for our purpose. However, the 
location of the zeroes of (Zh )  is still unknown, so let us tentatively assume that they are 
sufficiently well behaved to leave D,xr intact in the thermodynamic limit. 

We first consider step (c) of the replica method, the justification of the interchange 
of the thermodynamic limit and the differentiation in (8). To  prove this, it is sufficient to 
show that @N(n)  is analytic and bounded for n in  a neighbourhood K of the origin, the 
bound and the domain being independent of N. For if these conditions are satisfied, the 
theorem of Vitali (Titchmarsh 1939 § 5.22) guarantees that we can (at least) find an 
infinite subsequence NI ,  N2, N3 . . . such that 4 N ( n )  converges uniformly to an analytic 
function 4 ( n )  along this subsequence, implying that the interchange of N + 00 (along 
the subsequence) and differentiation is allowed (Titchmarsh 1939 § 2.81). According 
to the previous discussion, & ( n )  is analytic in such a domain X if no zero of (2;) 
approaches the origin as N+cD,  but we have not succeeded in proving this. The 
boundedness of 14N(n)l is also hard to establish, even with the necessary assumption of 
no zeros of (Zh), and we consider instead the function 

(45) 
which is analytic wherever 4 N ( n )  is. Bounds on l+N(n)j for the SK problem are derived 
in Appendix B, so the validity of the interchange of limits in (8), for +bN(n) in place of 
@N(n) ,  rests solely on the absence of zeroes of (ZL) approaching the origin. It is easy to 
show that the truth of (8) for & ( n )  implies that for 4 N ( n )  = I n  4 N ( n ) ,  at least for real n, 
and we are therefore able to state the conclusion: 

The interchange of the thermodynamic limit and differentiation at n = 0, equation 
(8), is valid if: 

( a )  No zeroes of (Zk) approach the origin n = 0 as N + CD, and 
(6) l(Zk)N-’l is uniformly bounded (w.r.t.N) in some neighborhood of the origin. 

Part (6) is true for the SK problem. 
We now turn to step (b) of the replica method, the extension from positive integer n 

to a neighbourhood of n = 0. Here too it is convenient to consider G N ( n ) ,  and its limit 
9 ( n )  = l i m ~ + ~  h ( n ) ,  rather than 4hr(n) and d(n).  By a calculation such as that 

N-1 - 4 d n )  = (2%) - exp(&(n)) 
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performed in Q 3 we know $ ( n )  at all positive integer n ; there is clearly no difficulty in 
reversing the order of the thermodynamic limit and the exponential in equation (45). It 
is easy to find an extension to real n since, for example, equation (28) is itself well 
defined for real n, but we need to show that this extension is unique. Suppose, therefore, 
that we could construct two different extensions, +ba(n) and $ b ( n ) ,  both agreeing with 
the calculated $ ( a )  at all the positive integers. We might now hope to demonstrate that 

( n )  - (Lb ( n )  is necessarily identically zero, giving a unique extension, by invoking 
Carleman’s or Carlson’s theorem (Titchmarsh 1939 90 3.71 and 5.81). But these 
theorems need analyticity in the whole right half-plane, or certainly in a sector thereof, 
and require a strong restriction on the growth rate of I$(n)i as In I + 03. We have already 
virtually abandoned hope of proving the necessary analyticity; we now show that the 
required growth condition is also unavailable for many models, including SK. 

In Appendix B we show for the SK problem that the function l$N(n)l grows, as 
in 1 + 00 in the right half-plane, according to 

l ~N(n ) l  - e x p [ ~ ( ~ e ( n ) ) ~ I  (46) 

where the constant C is independent of N. The same behaviour occurs in the Gaussian 
random field model considered by Schneider and Pytte (1977). This growth rate is too 
rapid for the application of Carlson’s theorem, so we cannot expect a uniqueness proof. 
Indeed, we could add a function of the form exp(an 2, sin m (0 s a < C )  to a supposed 
extension to obtain another equally valid extension with a different derivative at the 
origin. A similar possibility has been noted by Klein (1977). 

It might be thought that the function d ( n )  = I n  $ ( a )  would behave more coopera- 
tively, but there is no obvious way to bound the growth of Im(d(n))  = arg(Zk))/N. 

Carlson’s theorem? would ensure a unique extension given analyticity, if the growth 
rate were only 

l G ~ ( n ) l  exp(C W n ) ) .  (47) 
Comparison with this growth condition may be a useful criterion for the success or 
failure of the replica method in other applications, but cannot be relied upon without 
further knowledge of analyticity, which depends in turn on the location of the zeros of 
(2%). In general, analyticity seems of little help in proving the uniqueness of the 
extension to real n. This is hardly surprising, because the replica method fails at 
precisely this stage, as we show in the next section. 

6. Convexity 

Considered as a function of a real variable n, the quantity d N ( n )  defined by equation (5) 
is convex (Hardy, Littlewood and Polya 1934, theorems 197 and 213). This valuable 
property allows us a much more satisfactory description of the failings of the replica 
method. 

Our discussion hinges around a lemma due to Griffiths (1964) which reads, in terms 
of the present problem: 

L e m m a :  Let & ( n )  be a sequence of convex functions defined in an interval [a, b], 
and let &(n)  be the first derivative of d N ( n ) .  If there exists a function d ( n )  such 

f In applying Carlson‘s theorem (Titchmarsh 1939 0 5.811, consider the function &,(n) exp(-Cn); we do not 
need C < n because (47) contains Rein) ,  not 1111. 
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that limN+= 4 N ( n )  = 4 ( n )  for every point in [a, b], then d ( n )  is convex, and, 
furthermore, 

at every point at which the derivative 4 ’ ( n )  of 4 ( n )  is continuous. 
Equation (48) expresses, for n = 0, exactly the equality that we wish to prove in step (c) 
of the replica method. Besides convexity, the Griffiths lemma requires two further 
conditions; the existence of the limit d ( n )  (equation 7) for every real n in some finite 
interval containing the origin, and the continuity of d ’ ( n )  at the origin. We consider 
these in turn. 

Until now we have assumed that the limit (7) exists for all real n, although, as 
discussed in 0 2, we only have good physical grounds for the assumption at positive 
integer n. A proof is now at hand however; if in  any finite interval [a ,  b ] ,  the sequence of 
convex functions dAr(n)  is bounded above and below independently of N, there 
necessarily exists a sub-sequence that converges uniformly to a function d ( n )  in any 
interval contained in [a ,  b ]  (Roberts and Varberg 1973). Upper and lower bounds on 
& ( n )  are established in Appendix B for the SK problem, the bounds depending on n 
but not N, so for any  finite interval [a ,  b ]  we have m < 4 N ( n ) S M  and uniform 
convergence of q!JN(n) to q5(n) (along a sub-sequence) is guaranteed. Although any 
finite interval containing the origin n = 0 is sufficient for our purpose, we could extend 
the result to [ -CO, +m] by a diagonal procedure (Reed and Simon 1972). The existence 
of the limit in (7) is thus proven (along a sub-sequence) for the SK problem; the approach 
of Appendix B should also be applicable to most other problems that possess a sensible 
thermodynamic limit. 

The first part of the Griffiths lemma now assures us that q5(n) is itself convex, and 
therefore continuous. It is also, by virtue of convexity, differentiable almost every- 
where, but we need to know, for the second part of Griffiths’ lemma, whether in fact it 
has a continuous derivative at the origin. We have not succeeded in deciding this 
question for the general case, so we again specialise to the SK problem. In this case we 
have an explicit form for d ( n ) ,  equation (28) with the consistency condition (29), that is 
exact for all positive integer n. If we make the ‘obvious’ extension to real n, by assuming 
that these equations are also valid for real n, we can readily verify that the resulting 
q!J’(n) is continuous at n = 0. The Griffiths lemma then allows the interchange of limits 
and, with (6), gives us the final result obtained by Sherrington and Kirkpatrick, 
equations (30) and (31). 

Stepping back for an overview, we see that we have rigorously justified all the 
dubious steps in the SK problem, including the interchange of limits, on the basis of a 
single assumption: that the correct extension of q5 ( n )  from positive integer n to real n is 
simply given by interpreting n as a real variable in equations (28) and (29), the exact 
results for integer n. At the same time we know that the final result is wrong because it 
leads to a negative entropy at low temperature, and this is clearly impossible given the 
original Hamiltonian. We must therefore conclude that the above assumption is wrong 
and the ‘obvious’ extension from integer to real n is definitely incorrect. Our previous 
difficulties in proving the uniqueness of this extension are thus quite natural. We might 
have attempted to invoke convexity, as well as analyticity, to prove uniqueness, but we 
now perceive that this task is hopeless. There are at least two different extensions of 
equations (28) and (29); the unknown correct one, and the ‘obvious’, but incorrect, one 
used by SK. 
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Klein (1977) has also suggested that the extension to real n is non-unique and is to 
be blamed for the failure of SK. Our approach has gone further by eliminating all other 
loopholes in SK, thus proving that the faulty extension is exclusively responsible for this 
failure. In a different approach, de Almeida and Thouless (1978) have examined the 
stability of the minimum off,, (4; y ) ,  showing that an eigenvalue of the Hessian changes 
sign if extrapolated to n = 0. The existence of a negative eigenvalue for n = 0 suggests 
intuitively that we have the ‘wrong’ stationary point in this region. At any positive 
integer n, where the Hessian is well defined, there are no negative eigenvalues 
however-at n = 0 and n = 1 there are no eigenvalues at all-and so their result also 
points to a breakdown of the extension to real n. 

It might be argued that f ( p )  in equation (30) is right and that the negative entropy 
arises from an inpermissible reversal of a/ap and the thermodynamic limit. But since 
-pf(p) is a convex function of p for any finite system, and the thermodynamic limit 
exists, we can mimic the above arguments with n replaced by p, and conclude that this 
reversal is also allowable. 

We warn the reader that our proof of the validity of the interchange of limits is not 
necessarily valid for versions of the replica me!hod other than that formulated here. 
Prescriptions involving (Z”) rather than (2“)”- are particularly suspect. We also note 
that Klein (1977) has introduced a different representation for In Z, 

exp( -ax) 
(In 2)  = lim jam dx (cos x - cos(2x)) 

a +O X 
(49) 

for which the interchange of the thermodynamic limit and the operations specified is 
definitely invalid; since cos x - cos(2x) is bounded, the quantity 

to exp(-ax) 
lim lim N-’ Io dx (cos x - cos(Zx)) 
a+O N - m  X 

is identically zero. The interchange may be valid when rewritten in terms of ZN- ’ ,  but 
this is not obvious and deserves further study. 

Summarising this section: 
The interchange of the thermodynamic limit and differentiation at n = 0, equation 

( a )  The sequence of functions 4 ~ ( n )  has an upper and lower bound independent of 

( b )  ~$ ’ (n )  is continuous at n = 0. 

(8), is valid if 

N in some finite interval including the origin, and 

Condition ( a )  is true for SK;  condition ( b )  is true for the ‘obvious’ extension of SK to real 
n, which is therefore the wrong extension. 

7. Conclusion 

We have shown unambiguously that the trouble in the SK problem lies solely in the 
extension from integer to real n ; the ‘obvious’ extension is definitely wrong. The rest of 
the SK calculation has been put on a firmer footing by making the thermodynamic limit 
explicit, by avoiding the steepest descent method (which gives nonsense if applied 
carefully), by proving the ‘positive diagonal’ theorem, and by proving the validity of the 
interchange of limits. We have also shown that a wide range of probability distributions 
gives the same results. 
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We have not actually proved the validity of the interchange of limits for the replica 
method in general, even within our own formulation, since the bounds of Appendix B, 
and the continuity of c$’(n) at n = 0, are model-dependent, but it should be easy to 
follow similar arguments for models other than SK. In models possessing a slower 
growth rate, equation (47), we may reasonably expect the ‘obvious‘ extension to be 
correct (and unique), but a proof of this depends on the location of the zeros of (Zk?). 

We have shown, in the SK problem, that the extension to real n cannot be unique, 
since the ‘obvious’ extension is not the correct one. We suspect that zeros of (2:~) do 
indeed approach the real axis as N+w, giving c$(n) some sort of non-analyticity at 
small n, thus making the correct extension far from obvious and perhaps pathological. 
We tentatively suggest that the trouble occurs at or near n = 1, noting that c$(n) is 
independent of 4 at this point. We also remark that n = 2 appears to be a special point; 
for n > 2 the transition in the replica system is first order and has a critical temperature 
(at which q jumps to zero) greater than T,. 
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Appendix A 

We prove the following theorem: 

Theorem : If y > 0, and q = (4-0 ; 1 
‘q-space’ that maximises the function 

a s /3 s n }  is a vector in i n  ( n  - 1) dimensional 

then IqaOl = 4 3 0 for all (cup). If q f 0, there are 2”-’ equivalent q ’ s ,  differingonly in 
the signs of their components qOp, that all maximise Q,(q); one of these has all 
components positive. The absolute maximum of Q, ( q )  is thus always realised on the 
positive diagonal, qnO = 4 3 0 for all (cyp). 
Here, as elsewhere in this paper, (a@) stands for each distinct pair (1 s cy < p s n} ,  

and the trace, a finite sum, is to be taken over all 2“ k i n g  spin configurations {Sa = f 1 ; 
1 s cy s n}. The theorem is trivial for n = 2, so we assume n 2 3 in  what follows. 

The conclusion of this theorem, for the maximum of Q, ( q ) ,  is clearly equivalent to 
the result claimed in § 3 for the minimum of f , ( q ;  y )  = -{ln Q , ( q ) } / Y .  It was also 
assumed, without proof, by Sherrington and Kirkpatrick in their original exposition, 
where, however, the existence of several equivalent maxima was overlooked. Although 
intuitively reasonable, the theorem cannot be regarded as obvious, and a proof is 
essential if the weaknesses of the replica method are to be systematically eliminated. 
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The theorem was first proved by Elliott Lieb of Princeton University. The first part 
of our proof, up to and including the lemma, is due to Lieb and is used by permission. 
The rest of our proof is simpler than Lieb’s but was influenced by it. 

We first examine the symmetry properties of Q,(4). There is an obvious permu- 
tation symmetry among the labels a ,  giving n ! points equivalent to a general point in 
q-space (and less for special points with some components equal). More importantly, 
there is a sign symmetry. If pa = i l  for CY = 1,2,  . . . , n, the sign transformation 

( ‘ 4 . 2 )  

leaves Q, unchanged; Q,(T,q) = Q,(q). There are 2“-’ distinct sign transformations, 
including the identity, since {F,} and {p :  = -pa}  are equivalent. 

We remark that Q,(q) is a positive, continuous (in fact smooth) function of 4 that 
tends to zero uniformly as 4 + a. Therefore at least one absolute maximum exists, and, 
by the argument following equation ( 2 5 ) ,  is to be found in the unit cube, < 1 for all 

It is convenient to break up the trace in (A.l)  into an explicit sum over two spins, say 
S1 and S 2 ,  and a reduced trace, Tr‘, over the remaining spins S 3 ,  . . . S,. The components 
qap then fall naturally into four groups: q12; A = ( ~ 1 ~  ; 3 c a S n } ;  B = { q 2 a  ; 3 S cy G n } ;  
C = {qup; 3 c a < p  G n}.  Writing q = (412, A, B, C) we now prove a lemma. 

T, : 4 = {qaP1’{PaPP4ap} 

(ab) .  

Lemma : If q’ and q” are defined in terms of q = (q12 ,  A,  B, C )  by q’ = (qI2, A, A,  C )  
and q“ = (q12, B, B, C) and q12 a 0, then 

Q n ( q )  G {Q,(4’)Qn(q1‘)}1’2. (-4.3) 

Further, if q12> 0, equality holds in (A.3) if and only if A = B (i.e. { q l m  = q Z a ;  
3 s a s U } )  and thus 4 = q’ = q”.  
Proof: Consider first the quadratic form 

and notice that the 2 X 2 matrix exp(yql2S1SJ is positive semidefinite if 412 3 0 and 
strictly positive definite if q 1 2  > 0. Therefore, by the Cauchy-Schwarz inequality, 

lK(g, h) I2sK(g ,  g)K(h, h )  (A.5) 

and when q12 > 0 this can only be an equality if g and h are linearly dependent, in 
which case g(+l)h(-1) = g(- l )h(+l ) .  

Letting X = {S3,  . . . , S,,} ,  if we now set 

(A.6a) 

(A.66) 

(A.6c) 

we see that 

(’4.7) 
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which proves (A.3). The second step in (A.8) is a straightforward application of the 
Cauchy-Schwarz inequality. 

If 4 1 2 > O  the first inequality in (A.8) is strict unless gl(+l  lX)g2(-l IX) = 
gl(-1 /X)gZ(+l lX) for all X, which implies 

n 

3 
(41~-42oc)Sm=O 

whatever the S,. This sum cannot vanish both for S, = +1 and for S, = -1 unless 
4Aa = qz,, for any given a 2 3. A = B is thus necessary for equality in (A.3) if 
412 > 0; it is obviously sufficient. 

Now suppose that q maximises Q,(q), and q 1 2  2 0. With q’  and 4” defined in the 
sense of the lemma we have the inequality (A.3) and the additional inequalities 
Q, ( q )  3 Q,(q’), Q, ( q )  L Q,(q”), since q maximizes Q,. These three inequalities can be 
satisfied simultaneously only if 

Q,(q) = Q,(q’) = Q,(q“) (if 41230 and q maximises Q,). (A.9) 

If 412 > 0 this implies 41, = 42, for all a L 3. 
The lemma and the deduction (A.9) single out spins one and two from the rest, but 

the permutation symmetry assures us that they could equally well be applied to any pair 
of spins (with obvious adaptions of the notation). Consider, therefore, a ‘triangle’ of 
any three ‘points’ A ,  p,  v (A  < p < Y) with their associated ‘bonds’ 4 A & ,  4 A u ,  4,”, and 
continue to assume that 4 maximises Q,. If any one of the bonds is strictly positive the 
other two must be equal. If any one is strictly negative an appropriate sign trans- 
formation gives an equivalent maximising q in which it is strictly positive; the other two 
bonds must be equal in the transformed 4, and therefore equal in magnitude but 
opposite in sign (unless zero) in the original q. These observations eliminate all but the 
following possibilities for the three quantities 4 A & ,  ~ A v ,  4,” : 

( a )  Allzero; 
( b )  All strictly positive and equal; 
( c )  All non-zero and equal in magnitude, one positive, two negative; 
( d )  Two zero, one non-zero. 
In case ( d ) ,  application of equation (A.9) to one of the zero bonds gives us a q’ that 

has one zero and two non-zero bonds in the corresponding triangle. Since this belongs 
to none of the above cases, q’  cannot maximize Q,, and therefore, as Qn(q )  = Q,(4’), 
neither can q. Thus case ( d )  must also be eliminated. 

Since the above result applies to any triangle, a q that maximizes Q,, must either be 
identically zero or must have all components quo non-zero and equal in magnitude. If q 
is non-zero, each possible triangle must belong to case ( b )  or case (c) above, so, 
considering in particular the triangles 1-a-p(2 s a  < p s n ) ,  we must have sign(qUp) = 
sign(ql,) sign(qlp). Applying a sign transformation T,, with p1 = 1, and p, = sign(ql,) 
for a L 2, generates an equivalent q with all components strictly positive and equal, i.e. 





580 J L van Hemmen and R G Palmer 

References 

de Almeida J R L and Thouless D J 1978 J. Phys. A: Math. Gen. 11 983-90 
Breiman L 1968 Probability (Reading, Mass: Addison-Wesley) ch 8 
Edwards S F and Anderson P W 1975 J. Phys. F: Metal Phys. 5 965-74 
Griffiths R B 1964 J. Math. Phys. 5 1215-22 
Hardy G H, Littlewood J E and Polya G 1934 Inequalities (Cambridge: Cambridge University Press) 
van Hemmen J L 1978 Fortschritte der Physik 26 397-439 
Kac M 1968 Arkiv for Der Fysiske Seminar i Trondheim 11 1-22 
Kirkpatrick S and Sherrington D 1978 Phys. Rev. B17 4384-403 
Klein M W 1977 J. Phys. F: Metal Phys. 7 L267-71 
Kosterlitz J M, Thouless D J and Jones R C 1976 Phys. Rev. Leu. 36 1217-20 
Lin T F 1970 J. Math. Phys. 11 1584-90 
den Ouden L W J, Capel H W, Perk J H H and Tindemans P A J 1976a, Physica 85A 51-70 
den Ouden L W J, Capel H W and Perk J H H 1976b Physica 85A 425-456 
Reed M C and Simon B 1972 Methods of Modern MarhematicalPhysics vol 1 (New York: Academic Press) 

Roberts A W and Varberg D E 1973 Conuex functions (New York: Academic Press) p 20 
Ruelle D 1969 SratisticalMechanics (New York: Benjamin) p 17 
Schneider T and Pytte E 1977 Phys. Ret.. B15 1519-22 
Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792-6 
Thouless D J, Anderson P W and Palmer R G 1977 Phil. Mag. 35 593-601 
Titchmarsh E C 1939 The Theory of Functions 2nd ed (London: Oxford University Press) 
Yang C N and Lee T D 1952 Phys. Rev. 87 404-9 

P 28 


